PORTLAND STATE

UNIVERSITY

Intelligent Robotics I
Sonbi Humanoid Robot
Final Project
Winter 2006

Index
1Introduction

User’s Manual
2
Overall Description of Sonbi
2
Knowing the Hardware
3
Knowing the Software
4
Sonbi Simple Controller
4
Communications
4
Power Source
5
Technical Details
8
Mechanical/Electrical Work and Software Development
8
Electrical Work
8
ASC16 (Advanced Servo Controller)
8
Communications
9
Power Source
10
Mechanical Work
11
Using SAPI 5.1
10
Natural Motion Approach
11
APPENDIX A
17
ASC16 Datasheet corrections
17
APPENDIX B
19
AT and ATX Power Supplies
19
Using a Second Power Supply
19
APPENDIX B
24
XML TTS Tutorial
24
SAPI XML TTS for Application Developers
24
Voice state control tags
24
Volume
24
Rate
25
Speed
25
Pitch
25
Emph
26
Spell
26
Direct item insertion tags
26
Silence
26
Pron
27
Bookmark
27
Voice context control tags
27
PartOfSp
27
Context
28
Voice Selection Tags
28
Voice
28
Lang
29
Custom Pronunciation
29
APPENDIX C
30
SpeechVisemeType Enum
30
Definition
30
Elements
30

Mechanical Work, Natural Motion Algorithms and Further Software Development and Improvements for the Hahoe Theatre’s Sonbi Humanoid Robot.
Preliminary Final Project Report

for

Intelligent Robotics I (ECE 578)

Portland State University, Winter 2006

Professor: Marek Perkowski

Student: Alejandro Perez
Introduction

First of all, I would like to state the fact that other than a grade, this documentation has been made for the use of future teams who will be expanding Robot Theatre project as the only way in which good projects reach great results is by a perfect documentation of the work and experiences that other people have lived throughout the implementation of such.
This project started a long time ago. There had been a lot of hands and minds working on it. Somehow for demonstrations, robot shows and over-seas presentation purposes, this robot has been built, disassembled and rebuilt several times. It was very unfortunate that the previous students who work on it did leave complete documented connection diagrams, troubleshooting instructions, and detailed mechanical operation descriptions. Lack of their documented overall experiences has lead to a lot of wasted time for the people who have worked on this project. We have had to walk through the same steps as the people before us.
Furthermore, nowadays’ express advances of technology and the difference of experience among the new participants in the project, makes that some problems that before were difficult to deal with, now can be resolved and easily surpassed.
Stefan Gebauer is one of the people who have worked before on this project and his documentation helped a lot in the creation of this document (Thank you, Stefan). The robot has passed trough other masks and names such as Prof. Perky and Frank among others. The actual robot’s name is Sonbi as that is the name of the Korean Hahoe theatre mask that he is wearing. It was adopted to Korean Theatre in 2004. If you want to learn more about the Korean Hahoe theatre and its masks’ names and stories you can go to www.maskmuseum.com/coding/english/default.asp or any other of the many websites about that subject.
I hope this document can help all the people interested in the improvement and further development of the Hahoe Robot Theatre is project. I can assure you that it will at least save you many possibly wasted hours by preventing you from taking some erroneous steps from all the possible ones.
User’s Manual
This section covers all the required knowledge to get Sonbi up and running.
Overall Description of Sonbi

Sonbi is a humanoid robot capable to move, speak, and understand what you say. He is capable to maintain small conversations with somebody while showing some corporal language. The main structure of the robot’s functionality can be seen in Figure 1.
[image: image1.jpg]SAPI m==s ALICE

Analizer

Figure 1. Blocks diagram of Sonbi’s functioning.

The project was divided in two parts between Garret Martinez and me. He was in charge of the three upper blue blocks in the diagram. At first my only job in the project was to “resurrect” Sonbi by restoring his hardware. I wanted to go beyond that, so, that’s how the other blocks appeared accompanied by the Natural Motion approach I made for this project.
When the user speaks to Sonbi by a headset or microphone, his speech is interpreted by SAPI 5.1 and converted to text. An ALICE-like bot takes care of answering to the user text in the more appropriate way. This answer text is passed trough a Phrase Analyzer that has two outputs. One output goes into SAPI again, but this time it is going to be processed as TTS (Text To Speech). The other output of the Phrase Analyzer selects the words that are more relevant to body expressions in a sentence. These words go to a Positions Processor that decodes them in their corresponding corporal positions. Lastly, these are converted in the ASC16 language via the ASC16 Interface.
The actual behavior and programming of Sonbi is not quite the same as the one depicted in the diagram. Since Garret Martinez didn’t make his part of the project, I saw myself in the need to work in my and his part of the project (Not because I had to, but because I wanted to see it finished). I didn’t have the time to complete the whole project by myself. The “Phrase Analyzer” block is missing and the “Positions Processing” needs to be done by hand. Anyway, it isn’t a lot more of work to do. I hope to finish it soon.
Knowing the Hardware

Sonbi is the humanoid robot that can be seen in Figure 2.
[image: image2.jpg]

Figure 2. Sonbi humanoid robot

It counts with 10 degrees of freedom in its body (I couldn’t find the legs)

[image: image3.jpg]

 [image: image4.jpg]

[image: image5.jpg]

Knowing the Software

Sonbi Simple Controller

This application basically involves four main capabilities: TTS (Text To Speech), SR (Speech Recognition), Chatter Bot and Motion Control. The GUI of this still-in-progress application is shown in Figure x.
[image: image6.png]5
Fie Help

SONBI

‘SONBI Simple Controler

TTS INSTANCE

What a7
W mane?
D vnaree
onypecie hovevotkedonty |+ Whaahves?
ESBERE, Soms of Wit s you pupose?
. el
CERON S L o
PR
ParES
N s, 3
LoodSnbs i
Tt e Db Tk
T T
Event: Viseme, VisemeT ype TTS-Only Testing ListBox-Only Testing
R e
EENER [
Event S ORD ot
Event Vi, VoamaTopendt Vienede o
Event: Viseme, VisemeType=11, Visemeld= Stop
vt Ve VsmelypocT .Y
Event: Viseme, VisemeT ype Pause [Bere &
RN
vt Ve VemeTpoc6 Vs N -
Event: Viseme, VisemeT ype Skip 0 = Speech enabled
R
R = © SpaschionTosing
R
R
R D
Event: Viseme, VisemeT ype BRIy iy
. Sev Nudgo Too

Clear Debug Ifo

DOF Tester

Mation Secipt

uz

sp1 60
5260
5360

15
25
35

mv1 3200
mv2 3500
m3 1700 v

Send o Cantioler

View Numeic Code

Control Panel
Voice Micrasoft Mike
Format SAFT22KHz16BiMano
Audio
Dtiey | Dnda de audio de AL
Speak Flags
v IS
PersistxML
sFiename

v PugsBeforsSpesk

v ShawEverts

Immeciate Window
0wt
16 4000

Clear

Teminate

Speed

Volume

Restore Al To
Defaulls

Communications

The direct communication with Sonbi’s hardware is made via a DB9 serial cable with RS232 standard. The robot has already attached a long DB9 cable to avoid the need of having your computer very close to it. This cable has a male connector its end. If you have a computer with a serial port incorporated I’m almost sure you won’t have problems with it

[image: image7]
Power Source

It is said that batteries are the best power solution for almost any kind of robots. In “Sonbi’s Stuff” box I provide a special connector to feed the whole system with only one power supply. I strongly recommend that if you are going to provide only one power supply, let it be made up of batteries.

DIN5

[image: image8.emf]
[image: image9.emf]
DB9

[image: image10.emf]
[image: image11.emf]
[image: image12.emf]
Figure x. Female 5.25” drive power connector diagram (a.k.a. Molex).

[image: image13.png]

Figure x. Male 5.25” drive power connector diagram (a.k.a. Molex).

The recommended wire size to use with these connectors according to the ATX standard is 18 AWG (Exactly the ones we are using).
[image: image14.emf]
Table x. 5.25” drive power connector outline.
[image: image15.emf]
Figure x. Mother Board AT Power Connector diagram.
This connector is really two connectors in one. To get a 12 pins connector, the AT Power Supplies designers decided to use two 6 pins connectors of the same kind (not quite a good idea). In the absence of a physical Poka-Yoke1, these connectors could be connected in a wrong way by accident. This is why they stopped being used in the industry. Any way, they fit well for our purposes.
The above connector image is the one that can be seen at the computer it can connect to (I couldn’t find the image of the one seen at the PS cables). However it’s not a big effort to infer the PS cables configuration. By the way, these connectors ID# is MOLEX 90331-0001.

1 Impediment to connect in a wrong way.

[image: image16.emf]
Table x. P8 connector outline.

[image: image17.png]Pin Name Color

oD il Black

oD il Black

SV ‘White or Yellow
+5v [l Red

+5v [l Red

+5v [l Red

Description
Ground
Ground
-5 VDC
+5VDC
+5VDC
+5VDC

Table x. P9 connector outline.

From the configuration table of the connector P8 in the AT PS, we can appreciate that its orange cable corresponds to a “Power Good” signal. This signal can be used to determine when we are able to press the “Wake up Sonbi” button on its interface. This is very probable to be part of the next stage in this project.
[image: image18.emf]
Figure x. ATX Power Supply Connector diagram (At the cable)

If for some reason you might need it, the connector in Figure x. is the outline of the connector at the cable of an ATX PS. Its ID# is 20 PIN MOLEX 39-01-2200.
Technical Details

Mechanical/Electrical Work and Software Development
Electrical Work

ASC16 (Advanced Servo Controller)

One of the main issues regarding Sonbi’s “resurrection” was this module.
[image: image19.jpg]

[image: image20.jpg]

[image: image21.jpg]

Communications

As I mentioned in the user’s manual, a little RS232 level converter is the one in charge of interpreting the communication signals between the ASC16 and the computer. I noticed that sometimes the ASC16 didn’t receive a part or any of the information I sent to it. Also sometimes my computer missed the information this module sent to it. After analyzing the communication signals in an oscilloscope, I figured out that sometimes the voltage in the transmission line was zero. In the RS232 standard this is not possible as there are only voltages bigger and lesser than zero. I opted to change the wires that connected this module to the ASC16 and solder new ones with a new connector in order to avoid a possible internal bad contact. After I did this I didn’t had that problem again.
I thought that maybe the reason for what the RS232 interpreter module had a bad contact, was because it had been prone to a lot of movement since the only attached module to Sonbi’s body was the ASC16. I decided to screw both the RS232 module and the ASC16 to the front of the robot (Before, the ASC16 was attached to Sonbi’s back).

I attached a long DB9 serial cable to Sonbi’s control hardware as mentioned in the User’s Manual. As at first I didn’t have the DB9 gender converter (Which should be in the “Sonbi’s Stuff” box if is not attached to the cable), I had to build my own home-made gender converter as shown in Figure x.
Figure x. “Home-made” male to female DB9 converter.

If you need this gender converter (for Sonbi purposes only) and it’s neither attached to the cable nor in the “Sonbi’s Stuff” box, then somebody lost it (I would really hate that). If for any reason you need a gender changer ASAP here are the instructions to build one very easily.

In the serial DB9 standard configuration there are only three wires that we really need: Reception (Rx or Rd), Transmission (Tx or Td) and Ground (GND). As we can see in the Table x, those pins are the second, third and fifth respectively:
	Serial Port Pin and Signal Assignments

	Pin
	Label
	Signal Name
	Signal Type

	1
	CD
	Carrier Detect
	Control

	2
	RD
	Received Data
	Data

	3
	TD
	Transmitted Data
	Data

	4
	DTR
	Data Terminal Ready
	Control

	5
	GND
	Signal Ground
	Ground

	6
	DSR
	Data Set Ready
	Control

	7
	RTS
	Request to Send
	Control

	8
	CTS
	Clear to Send
	Control

	9
	RI
	Ring Indicator
	Control

Table x. Serial DB9 standard configuration.

Now, the only thing you need to do is connect the female pin headers that I left in “Sonbi’s Stuff” box (with a female DB9 already attached to them) to the corresponding pins of the male connector as follows:

· The female pin header with the orange wire should be connected to the pin 2 (Rx) of the male connector.
· The female pin header with the red wire should be connected to the pin 3 (Tx) of the male connector.

· The female pin header with the brown wire should be connected to the pin 5 (GND) of the male connector.

Now you have an improvised gender changer. However, I’m planning to buy a USB-to-Serial port converter in the next stage of the project specifically to stay with Sonbi (The one I’m using right now is mine). Also, I will rearrange its communications wiring in order to only have a long USB cable to connect directly to the computer, no more extrinsic intermediaries. This way there shouldn’t be a way to lose the provided gender changer as it would be fixed to the main structure.
Power Source

In his documentation, Stefan Gebauer talked about a Switching Power Supply that he attached to Frank (Now Sonbi). I think that this Power Supply (PS) was lost somewhere in the lab before the robot made its performance in Korea as I’ve been told that they used a huge amount of batteries in that play.

At first I was using a little BEC (Battery Elimination Circuit) fixed at 5 volts and capable to give up to 1.5 Amps. When I was in the process of testing Sonbi from top to bottom to check if all the servos were working properly, I noticed that none of the 6 servos in the arms worked at all. Initially I thought that the reason for this was that the servos were broken, but when I did some research about how much current do these servos normally demand I understood that the BEC I was using could not possible wake up one of these servos.

I tried to use a variable power supply that could give up to 2.5 Amps. I set it up to 5 volts. My intentions at this moment were to check if this current could at least activate one of these big servos. As nothing happened I changed the voltage of the PS to 6 volts to rise a little bit the total given power of the PS (Valid voltage to both the ASC16 and these servos according to their respective datasheets). With this action I could notice yet another issue with the ASC16. The ASC16 showed a very strange behavior while being fed with 6 volts. I would like to emphasize the fact that it didn’t obey the commands I sent to it at all. It only entered in a “pseudo-demo” mode regardless it was preset in demo or normal mode. Knowing this, I decided to set the official feeding voltage range of the whole system between 4.8 volts and 5.4 volts, nothing more neither less. The system worked fine within this range.
With time, I found an old AT Switching Power Supply in a no-more usable PC

Servo kinematics, what happens if they’re not initialized in a loadless position

Mechanical Work

At the beginning of everything, I was given the task to rebuild the recently arrived from Korea, Sonbi robot. First I examined the compounding parts of this robot (arms, legs, thorax, electronic components, etc.) to have a clearer idea of how it should function.
[image: image22.jpg]

Sonbi's left arm

[image: image23.jpg]

Sonbi's thorax and right arm

(Scrambled wires included)

I searched for the necessary screws to get together the left arm's joints. When this was done, I verified its correct placement and mechanical functioning. There were also a problematic joint that had an Allen screw on it; it was loose on both arms. At first I couldn't fix it because I didn't have the necessary Allen tools.

[image: image24.jpg]

Problematic joint

All the wires were unscrambled and labeled. I also placed the robot's thorax on its original base. I noticed that the plate to which it is attached to the base is not strong enough. I think that it will possibly break soon. Obviously I’m going to change it soon.
[image: image25.jpg]

Thorax attached to the base

I searched and placed the right screws to fix the right arm. This was complicated because most of the metal sheets were bent and in very bad shape.
[image: image26.jpg]

 [image: image27.jpg]

Different perspectives of the installed right arm

In these first sessions, I spent much time finding screws and tools in the lab because I wasn’t familiar with it. The later sessions I brought some tools from home. I would recommend to bring your own tools until the lab gets organized some day (Probably never ;-)).
As in later sessions I brought my own tools, I could fix the Allen screws that were mentioned before. The gap and bad arm functioning that this loose screws made were eliminated.

I noticed a problem with the servo-motor that control the eyes. It was not properly attached to the head as can be seen in the pictures below.
[image: image73.jpg]

[image: image28.jpg]

 [image: image29.jpg]

Head as-was and popped-up servomotor

The head was drilled in order to make space for a plastic fastener. This plastic fastener's purpose is to hold the servo-motor in its correct place. We also corrected the eyes' position as the robot looked like cross-eyed.

I noticed that the robot's mask had a wood sheet on it (glued with silicon) to be attached to the head. This wood sheet was broken and the head didn’t have a correct/reliable way to attach the mask. The mask was once attached to the head with silicon, but obviously this is neither suitable for traveling purposes nor anything else.
[image: image30.jpg]

Broken silicon-aided mask-to-head attachment

I proceeded to design and build a new attaching system for this mask. First I cut a new wood sheet for the mask following the pattern of its contour. When I confirmed that the wood sheet had the correct size, I screwed it to the mask with three wood screws to make it easier to un-screw when it needs to travel.
[image: image31.jpg]

 [image: image32.jpg]

Realization of the plate for the new attachment method

Once I had this, I proceeded to make a notch to both the mask and the head so that they could be easily put together and apart if it is required. I also made another notch in the back of the head and changed the tying style in the mask’s knots. I’m not sure what would be the most accurate translation from Spanish of the new knots’ name. The literal translation would be “Fisher” knots. Their purpose with the back notch is to let the mask be fastened firmly to the head and loosen it again more easily for traveling purposes. To loose the mask you only need to slide one knot towards the other and vice versa.
[image: image33.jpg]

 [image: image34.jpg]

Different perspectives from the new assembly

In the following pictures we can see the head and mask individually to appreciate the notches in each one.

[image: image74.jpg]

[image: image75.png]

[image: image76.png]

[image: image35.jpg]

 [image: image36.jpg]

Individual parts of the new assembly and final steady result

Once I brought pliers, I could straighten out the bent metal sheets in the shoulders that didn't let me install the arms properly. Once I straightened out these sheets, I could finally install the arms in a good way. This is not suitable for traveling though, but I’m going to find a better way to do this later on.
[image: image37.jpg]

 [image: image38.jpg]

Bent metal sheet and the final desired result with the arm installed

Once the arms were installed, I manually tested the actual structure to verify its stability. It seems to be good except for the metal plate that joins the body to the metal base. I referred to this issue in the past, and I’m still going to fix it soon, but I’m having different ideas to do it. For instance, it can be done only by changing the plate that joins the upper part of the body to the base for a new one. This is the easiest thing to do, but I think there are better ways to improve its stability. Another way is to change the single central fixing spot to two separate fixing spots. These spots could be defined near each shoulder, and this way we would avoid the lateral shaking.

I thought about a third way to do it in which we could also avoid the vertical (back and forth) shaking. The bad thing about this way resides in its complexity, as it changes a lot the main backbone of Sonbi. The idea is to build a reinforced structure in the back of Sonbi. This structure would have three or four fixing spots in its center. The good thing is that this way we could use a couple of servo gearboxes (enhanced servomotors) to pan and tilt the whole body so it could be more expressive. It’s not a very hard thing to do, it only requires time.
[image: image39.jpg]

Sonbi’s main structure with arms attached

I noticed that the neck of the robot couldn't be properly attached to the body because its base was made of not anymore stable silicon and loose screws. It couldn’t hold the weight of the head. This was originated by the screws that held the base as they didn't have nuts to be held in place (They were only held by green tape). As my goal was to make a more portable version of this robot, I built a better (not yet optimal) neck base for it.
[image: image77.jpg]

[image: image40.jpg]

 [image: image41.jpg]

Old neck base and old screws without nuts
I couldn't find proper nuts for these screws, but I found very alike screws with nuts. They were of a different kind of screws, so that I needed to make modifications on them. You can see these modifications from below the robot’s neck (Not in these pictures). After these modifications the screws really suited our needs and effectively held the metal plates in place.
[image: image42.jpg]

New screws to firmly join the neck base to the body

Now that the robot had a stable base, I could proceed to attach the head to it in some way that could permit easy removal and attachment. Provisionally I found a way in which the only needed thing to re-attach the head is a single plastic fastener. I will look for better ways to do this later.
[image: image78.wmf][image: image43.jpg]

 [image: image44.jpg]

New neck-holding method and close-up

To correctly dismount the head from the body, you only need to cut the “head” of the upper plastic fastener pointed with a red arrow in the pictures above. The point where you have to cut is also marked with a red line in the plastic fastener.

Once the head is off you only need another plastic fastener to attach it again. I will think in another way to do it in order to avoid the need of plastic fasteners.
NOTE: It is very important that you only cut the “head” of the upper plastic fastener and NOTHING from the lower plastic fastener. If you cut something from this fastener it will only complicate the process as you will have to run another plastic fastener underneath the base to replace it.
Once the whole body was assembled the structure looked like the following picture:

[image: image45.jpg]YONATED BY INTEL

™

Y
|

Assembled Sonbi’s structure
While I was testing the correct functioning of each servo, I noticed that the servo that controlled the eyes motion “fainted” after a short time of being turned on. This behavior can be seen in the video “Sonbi's eyes malfunctioning.asf”. I found out that this issue was caused by the shape of the wire pulling and pushing the eyes’ tabs. The shape of this wire was such that it could push and pull the eyes’ tabs while moving. The problem was that in the middle of the motion, it was a little compacted (working as a spring) and then suddenly released firing its stored mechanical energy to the servomotor’s shaft. This effect permanently damaged the eyes’ servo as it had the same behavior even when it was unloaded. As I wanted to dispose as few servos as possible, I changed the spring-like wire for a new one with another shape trying to avoid the spring effect. Once I did this, I tested it again and saw it working correctly. However, if it barely “feels” a little load it will “faint” again. As the eyes in this robot are not going to be loaded at all, I decided to not dispose the servo.
[image: image46.jpg]

New non-spring-like wire

I also didn’t find very convenient to have the ASC16 in the back of the robot. I decided to fix it in the robot’s front to make the wiring inspection easier and you don’t have to dismount the robot in order to plug/unplug something.
As I wanted Sonbi to be more portable, I also decided to have an easier and cleaner way to connect all the servo-motors to the ASC16 Servo Controller. The robot has 10 servo-motors (three per arm and four in the head). My proposal was to have connectors in each limb that permit its easy plug and un-plug of the main body. This way we can avoid the wires’ cutting in case of traveling as happened before. The connectors I used for this purpose and how they need to be connected is explained in the User’s Manual.
[image: image47.jpg]

ASC16 attached in the front and wires’ better organization
The shoulders’ servos have many problems while trying to lift the arms. This is because the arms are heavy and there is no counter weight in the shoulders supporting the servos. Zigmund Rosinski is also a student in the Intelligent Robotics class working on the Robosapien V2 project. He told me that Robosapien uses springs in its structure to help relief its motors’ stress. Probably one future improvement will be to add springs to Sonbi’s shoulders to help them lift the arms. Anyway I will try to find out some way to make Sonbi’s arms lighter.
[image: image79.png]

[image: image48.jpg]

Probable spot to add helping springs
Unfortunately, as I already said in the User’s Manual, I couldn’t find the legs that Stefan Gebauer talks about in his documentation. It’s very probable that they’re still somewhere in the lab because I was told that they were packaged with everything else in the return trip from Korea. I would’ve really liked to attach legs to Sonbi as they would also had help since a considerable weight in the robot’s waist improves dramatically his stability (less shaky).
Funny/Scary Fact: While I was working on Sonbi’s arms, he sometimes suddenly moved his head to his left even if it wasn’t connected at all! Not even one wire. It happened about 10 times in the whole term. I think it might’ve been because of the static that my jacket generates. Anyway it was scary and I rather not know the real reason of it.
Using SAPI 5.1
Natural Motion Approach

One goal that I wanted to achieve in this project (by self-determination) was the natural motion of Sonbi as it was only able to move in a very stiff and shaky way. To achieve this I first wanted to make some research to see how other people have been doing it before.
In my process of searching for publications, journals, articles and related papers, I found more than 60 of the mentioned with related topics. My sources were IEEE, Xplore, ProQuest, Google, Yahoo, etc. At first I was looking for hits with the words “Robot Motion”, “Robot Natural Motion”, “Natural Motion”, “Human-like Motion”, “Human Motion Mimiquing”, “Human Motion Imitation”, etc. But the papers that I found with these were only a few. However they helped me to know what I really wanted to do. Most of these publications are available in my documentation; I didn’t attach them in the appendices because they were many.

The sources that I liked most were three. One was from Aude Billard and Maja J. Mataric from the University of Southern California. They worked in an XYZ system for each joint as a space point. Once the capture the actual human motion, they interpolate it with Neural Networks.

[image: image49]
[image: image50]
Their motion tracking system, simulator and approximated graphs.

Another source was from Marubayashi, Matsui, and MacDorman from the Intelligent Robotics Laboratory directed by Prof. Hiroshi Ishiguro in the Osaka University (http://www.androidscience.org/). Even though they say they’re generating humanlike motion, they’re really copying it from other humans. The important thing here is that they’re imitating it via sine waves (big part of my approach).

[image: image51.jpg]Mapping

Human T Android
Motion Capture

Human motion mapping and capture

The third source was the Graphics, Visualization & Usability Center (http://www-static.cc.gatech.edu/gvu/animation/Areas/humanMotion/humanMotion.html). They use geometrical models for the human body and use average human motion schemes (statistical). Even though they don’t use robots (the motion is only simulated), they have done a very good job in this topic (see the stopPatty.mov video for an example). I really liked the way they use a geometrical model for the body.

[image: image52]

 SHAPE * MERGEFORMAT
[image: image53]
Geometrical body models and patty the police woman
Some of the papers were not completely useful for my purpose, as they only talked about natural motion in Animal Robots, Manga Robots, Walking Robots, and what I would like to call as Expressionist Robots (like Kismet, etc.). However, I read all these papers because there’s always something new you can learn.

[image: image54]
[image: image55]
[image: image56]
[image: image57]
Different types of robots in publications

A few of the whole pile of papers talked about how people program robots to imitate human motion. They are not really “generating” natural motion. This is where I would like to emphasize about the difference I feel between human motion and natural motion. From my point of view I think that the human motion will never be perfectly imitated unless we have a human body to play with as our robot. In the other hand, I think that there are several different ways in which things can move. For instance, you can have an oscillating pendulum with stiff motion like the pointers of a clock, or you can have a pendulum with natural motion as we know it. There is no need to apply human motion to the pendulum to make it look natural.
Once that I cleared the idea I was looking to expand, I decided that what I wanted was to mimic how humans and nature generate natural motion and NOT mimic the motion per se. Now, my search criteria changed to “Human Motion”, “Human Kinematics”, “Human Biomechanics”, “Biomechanics”, “Human Physiology”, etc. I found very good and useful things as they weren’t about robots anymore. They were about the real stuff, “How humans generate their movements”. Amy Morrison Gyorkos of the Western Michigan University nicely teaches about these topics in his Biomechanics classes. Some slides from those classes made me understand that the thing I had to mimic in order to get my purpose were the basic motion units: muscles.
I remembered a physiology book that helped me a lot while I was working in a hand prostheses project. Its name is “Textbook of medical physiology” from Arthur C. Guyton, McGraw-Hill. It shows a certain behavior of the human muscles acting as a critically stable control loop as they slightly shake when they reached the desired position. This shaking increases when the muscle’s load is bigger than the energy it can supply to sustain it. As this behavior is also present in servomotors when they are overloaded, I thought these elements would be enough for only an approximation of my purpose although other kind of actuators would be more accurate like electric muscles. As electric muscles are linear actuators and not rotational as servos, they would more accurately approximate the behavior of a muscle. However, in my case I used what I had to get the best (not yet optimal) approximation I could.
I also needed to take in count the degrees of freedom that Sonbi have comparing them to the human’s to see how accurate my approximation could be.

In the human arm there are 3 main joints involving degrees of freedom:

+ Glenohumeral (Scapula w/ Humerus)

A.K.A. Shoulder

+ Humeroulnar-Humeroradial-Radioulnar

A.K.A. Elbow

+ Wrist (Not present in Sonbi)

In the Scapula there are 5 degrees of freedom:

[image: image58]
[image: image59]
[image: image60]
 Elevation Depression Retraction

[image: image61]
[image: image62]
 Protraction Abduction/Adduction
From these, in Sonbi we only have Elevation and Depression.
In the human elbow we have Flexation/Extension, Humeroradial and Pronation/Supination. Sonbi counts with the first two. Sonbi’s head counts with 4 basic degrees of freedom: Neck Rotation, Neck Front/Back Tilt, Eyes Horizontal Motion and Jaw Open/Close.

Now, I divided this Natural Motion Approximation into four different subsystems.

+ Natural Regions of Motion Classification

+ Recognition and Validation of Human’s Most Commonly Acquired Positions

+ Decision Diagram for Transitions Between Different Positions

+ Motion Model for Transitions Between Different Positions

The “Natural Regions of Motion Classification” reason to be, is because of the absence of sensors, we cannot know by feedback if the robot is about to or did hit it self. So, we need to have a regions reference to know when we need to be careful in making a movement. I classified these regions in three main different subsets.

[image: image63]
[image: image64]

[image: image65]
With this criterion, a certain arm position can be classified in this regions system by the position in which the hand is.

Having this motion segmentation, I established a standard nomenclature system for positions as follows:

[image: image66]
So that the nomenclature above would describe a position like the one below:

[image: image67]
APPENDIX A
ASC16 Datasheet corrections

On the page 5 in the second line of the 6th paragraph:

"2 bytes" instead of "a 2 bytes"

"byte" instead of "bye"

On the page 8 in the second line of the "Freeze Motion" description:

"Freeze Off" instead of "Freeze On"

On the page 8 in the third and fourth line of the "Freeze Motion" sample code:

"f+" instead of "f-"

"f-" instead of "f+"

On the page 9 in the second line of the "Freeze Motion Off" description:

"f+" instead of "F-"

On the page 16 in the "Format" section of "s+":

"s+ s+ = 245" instead of "sa sa = 245"

On the page 16 the element of the "Numeric" column corresponding to "s+":

"245" instead of "246"

On the page 19 in the "Format" section of "Trigger Level":

"0, 1, 2 or 3" instead of "1, 2 or 3"

On the page 22 section 3.2.5 line 9

"equal" instead of "eqaul"

For the REV 2.2 of the ASC16 board:

On the page 4 in the point number 7:

"pins 1 and 2" instead of "two pins"

On the page 4 right after the point number 10 ending:

"change the jumper across pins 1 and 2 to pins 2 and 3 in JP1" instead of "remove the jumper across JP1"

On the page 4 in the second line of point 1.3.1:

"J18" instead of "P18"

Ports Note:

In this version of the ASC16 the port names change as following:

Purpose Old Name New Name

Prog JP1 ---

Rst JP2 ---

Outputs P21 J19

Inputs P17 J17

Demo JP3 JP1

Serial P18 J18

Power-out P20 ---

??? P19 ---

So, for ALL the "HARDWARE" section of the manual take the required considerations.

Quick Note (3.6 Autotest):

If you want to test all the servos connected to the ASC16 with the demo program, you must place a jumper across pin 1 and 2 of the JP1 header. If you want to normally control the ASC16, you must place the jumper between pins 2 and 3. If you don't place a jumper in the JP1 header at all, the most probable thing is that the ASC16 behaves like the last time it had a jumper (last configuration either normal mode or demo), but there ARE times when it behaves in the opposite way. So, to avoid unexpected convulsions on your robot that can cause damage to it, be sure to place a jumper in the place you want the ASC16 to work BEFORE turning it on.

Note:

Other information such as websites, brands and names have not been corrected even if they are wrong as the purpose of this corrections sheet is only to avoid wrong technical concepts.
APPENDIX B
AT and ATX Power Supplies
Using a Second Power Supply

by Nathanael Barbettini

You are encouraged to make links to this article from your website and tell your friends

The following advice is based on many years of experience. It is provided as a free service to our customers and visitors. However, Directron.com is not responsible for any damage as a result of following any of this advice. You are welcome to distribute these tips free to your friends and associates as long as it's not for commercial purposes.
· Introduction

· Power Supply Types

· Adding an AT power supply

· Adding an ATX power supply

· Starting an ATX power supply with a switch

· Starting an ATX power supply automatically

· Starting a stubborn power supply

Introduction

Ask someone how many power supplies they have in their computer, and you'll get a look like you're from another planet. Most people are content with one power supply, and in most cases, that's all you'll ever need.

However, for some people, especially serious modders with countless fans, cathodes, and who-knows-what-else, one power supply doesn't provide enough juice. In this guide, we will explore putting a second power supply in your computer, and hooking it up to a switch. If you are a modder, enthusiast, or just want to tinker, keep reading!

Power Supply Types

There are two basic types of power supplies. There are AT power supplies, which are older and in older computers, and ATX power supplies, which you will find in virtually every new computer you can buy.

There are two fundamental differences between AT and ATX power supplies. First, the switch mechanism is different. AT power supplies use a normal on-off switch, which directly turns the power supply on or off.

ATX power supplies use a momentary switch which does not directly control the power. Instead, the switch signals the motherboard, which performs one of three actions:

· If the computer is off, the power supply is turned on (which turns the computer on)

· If the computer is on, the computer goes into power-saving mode (standby)

· If the switch is held for more than 4 seconds, the power is cut and the computer turns off.

Because of this difference, ATX power supplies are better for projects that require the second power supply to turn on automatically when the computer is turned on.

The second difference is in the motherboard connector: AT power supplies provide two 6-pin connectors (figure 1), which are easy to insert backwards. The ATX connector is a single 20-pin connector that only plugs in one way (figure 2).
[image: image68.jpg]

 [image: image69.jpg]

Figures 1 and 2: The difference between AT (left) and ATX (right) motherboard connectors.
Both power supplies provide two types connectors for plugging devices into. These connectors are called Molex connectors, and they come in two sizes (see figure 3 and 4). A power supply will generally have a few of each size.

[image: image70.jpg]

 [image: image71.jpg]

Figures 3 and 4: Large (left) and small (right) Molex connectors.
There is no difference between the two sizes other than the size itself. Both sizes provide the same amount of power to whatever device is plugged into it (12V and 5V). The small Molex connectors are generally used only for floppy drives. Large Molex connectors power hard drives, CD/DVD drives, and many fans and lights as well.

Note: You can purchase large and small Y-adapters if you run out of Molex connectors. Be careful when using the Y-adapters however, because if your power supply does not have enough power for all the devices attached (especially true for older, lower-wattage supplies), you can damage it.

Now that we've looked a little at the types of power supplies, let's look at how to put a second one into your computer.

Adding an AT power supply

While this article will mostly focus on how to put a second ATX power supply into your computer, let's take a quick glance at doing the project with an AT-style supply.

Unlike an ATX power supply, an AT power supply does not usually need anything special to get it to turn on. All you need to do is to connect an on-off switch rated for 125VAC (in North America) and turn it on. If you recycle an old AT power supply from an old computer, the switch will most likely be already attached. See figure 5.

You can purchase AT Push-Button Switches from Directron if you need a new AT switch.

If there isn't a switch connected to the power supply already, you'll have to connect one yourself. There may be a diagram on the switch or the power supply itself showing how to connect the switch. Unfortunately, there is no set standard for AT switch wiring, so the connections will be different between manufacturers.

Warning: Be careful when you wire up the switch! Make sure it is connected properly before switching it on. Serious damage to your power supply, computer, or electrical wiring could result if the switch is wired incorrectly. If there is no diagram on the switch or power supply, look for some help at an electronics store or on the Internet.

[image: image72.jpg]

Figure 5: An AT power supply all ready to be turned on.

After you've connected the switch and powered up the supply to make sure it works correctly, you can put the two 6-pin motherboard connectors somewhere out of the way and start plugging devices into the Molex connectors.

One disadvantage of recycling that old AT power supply and using it for a second power source is the on-off switch requirement. There isn't an easy way of making the power supply turn on when your primary supply does (as you can do with an ATX power supply). For some people, having to use a separate switch is fine. If you are not one of those people, read ahead and use an ATX power supply instead.

Adding an ATX power supply

Using an ATX power supply as a second power source is not much harder than using an AT power supply. The only difference lies in the way you get it started.

Instead of an on-off switch like an AT power supply, ATX power supplies rely on a momentary switch, which is actually connected to a header on the motherboard. When the switch is pressed, the motherboard shorts the PS_ON pin (pin #14) on the 20-pin ATX motherboard connector (see figure 6). We can recreate this easily without the momentary switch.

Figure 6: ATX connector diagram.
To start an ATX power supply, we need to short the PS_ON pin. This is easily done by connecting a wire between the PS_ON pin (pin 14, usually the green wire) and any black Ground pin. This is shown in figure 7:

Figure 7: Shorting the PS_ON pin.
Unless you want your second power supply to stay on all the time, you'll want to hook up a permanent toggle switch, or connect it to your primary power supply so they both turn on at the same time. We will look at connecting a switch first.

Starting an ATX power supply with a switch

First, you'll need to obtain a switch. A SPDT (single-pole, double-throw) switch is a good choice. You can get SPDT switches at any electronics store.

Second, unless the switch comes with wires pre-attached, you'll have to solder or otherwise connect some wire to the switch (see figure 8). The wire doesn't have to be anything special since there won't be much, if any, voltage running through it.

Figure 8: Connecting wires to the SPDT switch.

Once you have the switch ready with the wires connected to it, stick one wire into the PS_ON pin (remember, pin #14, usually green) and another into any black Ground pin. It would be a good idea to solder or tape the wires in place so they don't fall out and cause a short.

Alternatively, if you don't mind cutting some wires, you could splice the switch tail wires directly onto the PS_ON and ground wires. This method is somewhat permanent, however.

Tip: It's a good idea to plug something into the power supply to make sure it's working, since some power supplies have awfully quiet internal fans. A LED or fan with a Molex connector will do the job. This step is not necessary, but is helpful so you can see visually whether or not the power supply is on.

Once everything is plugged in, flip the switch and see if it starts. If it does, good job! Turn it off and start plugging your devices in.

If the power supply doesn't start, make sure it is plugged into the wall and the switch is securely connected to the PS_ON and Ground wires. The switch might also be on backwards, if so, try reversing the wires (put the one that was plugged into the PS_ON wire onto the Ground wire, and the one that was connected to Ground on PS_ON) and see if it works.

Some power supplies also have a switch in the back, so make sure that it's in the ON position if there is one on yours.

If the power supply still won't start, it may need a "dummy load" to get it going. A dummy load device is a resistor with a Molex connector plug that simulates a device on the line. Skip down to the section titled "Starting a stubborn power supply", later in this article.

Starting an ATX power supply automatically

Depending on your project, you might want your second power supply to have a switch as described in the above section. For example, you could connect some extra fans to your second power supply and flip the switch on a hot day when your computer needs extra cooling power.

For most projects, however, the extra switch can be a hassle. You can ditch the switch altogether and connect your second power supply to your primary power supply, so the power button on your computer affects both power supplies.

To do this, you need a relay, which you can pick up at any electronics store. Make sure the relay you choose has 4 pins on the bottom and is rated for 12V DC or higher. Then wire it up according to figure 9.

Figure 9: Wiring diagram for the relay.
A relay works like a switch, except it is completely electronic. In this case, when the primary power supply is powered on and a 12V current is put into the relay via the yellow and black Molex pins, it shorts the green and black pins on the second power supply, turning it on. If you power on your computer and the second power supply doesn't turn on, check your connections. If all the wires are connected correctly, you may have a broken power supply, or your power supply may require a dummy load (see below).

Starting a stubborn power supply

In some cases, a power supply may not start at all, no matter how much you coax it. In those cases, you will need to obtain a dummy load that simulates a device attached to the power supply. You can purchase a 1A resistor dummy load device with a Molex tail, all ready to be plugged in. You could also plug some fans or lights into the power supply to try and power it.

If a dummy load won't even start it, try plugging in a big device such as an extra hard drive or CD drive. If the power supply still won't start, it is probably broken, or some of the wiring (for the switch or short) is not making full contact.
APPENDIX B
XML TTS Tutorial

SAPI XML TTS for Application Developers

SAPI text-to-speech (TTS) extensible markup language (XML) tags fall into several categories.

· Voice state control

· Direct item insertion

· Voice context control

· Voice selection

· Custom Pronunciation

Voice state control tags

SAPI TTS XML supports five tags that control the state of the current voice: Volume, Rate, Pitch, Emph, and Spell.

Volume

The Volume tag controls the volume of a voice. The tag can be empty, in which case it applies to all subsequent text, or it can have content, in which case it only applies to that content.

The Volume tag has one required attribute: Level. The value of this attribute should be an integer between zero and one hundred. Values outside of this range will be truncated.

<volume level="50">

This text should be spoken at volume level fifty.

 <volume level="100">

 This text should be spoken at volume level one hundred.

 </volume>

</volume>

<volume level="80"/>

All text which follows should be spoken at volume level eighty.
One hundred represents the default volume of a voice. Lower values represent percentages of this default. That is, 50 corresponds to 50% of full volume.

Values specified using the Volume tag will be combined with values specified programmatically (using ISpVoice::SetVolume). For example, if you combine a SetVolume(50) call with a <volume level="50"> tag, the volume of the voice should be 25% of its full volume.

Rate

The Rate tag controls the rate of a voice. The tag can be empty, in which case it applies to all subsequent text, or it can have content, in which case it only applies to that content.

The Rate tag has two attributes, Speed and AbsSpeed, one of which must be present. The value of both of these attributes should be an integer between negative ten and ten. Values outside of this range may be truncated by the engine (but are not truncated by SAPI). The AbsSpeed attribute controls the absolute rate of the voice, so a value of ten always corresponds to a value of ten, a value of five always corresponds to a value of five.

<rate absspeed="5">

 This text should be spoken at rate five.

 <rate absspeed="-5">

 This text should be spoken at rate negative five.

 </rate>

</rate>

<rate absspeed="10"/>
All text which follows should be spoken at rate ten.

Speed

The Speed attribute controls the relative rate of the voice. The absolute value is found by adding each Speed to the current absolute value.

<rate speed="5">

 This text should be spoken at rate five.

 <rate speed="-5">

 This text should be spoken at rate zero.

 </rate>

</rate>
Zero represents the default rate of a voice, with positive values being faster and negative values being slower. Values specified using the Rate tag will be combined with values specified programmatically (using ISpVoice::SetRate).

Pitch

The Pitch tag controls the pitch of a voice. The tag can be empty, in which case it applies to all subsequent text, or it can have content, in which case it only applies to that content.

The Pitch tag has two attributes, Middle and AbsMiddle, one of which must be present. The value of both of these attributes should be an integer between negative ten and ten. Values outside of this range may be truncated by the engine (but are not truncated by SAPI).

The AbsMiddle attribute controls the absolute pitch of the voice, so a value of ten always corresponds to a value of ten, a value of five always corresponds to a value of five.

<pitch absmiddle="5">

This text should be spoken at pitch five.

 <pitch absmiddle="-5">

 This text should be spoken at pitch negative five.

 </pitch>

</pitch>

<pitch absmiddle="10"/>
All text which follows should be spoken at pitch ten.

The Middle attribute controls the relative pitch of the voice. The absolute value is found by adding each Middle to the current absolute value.

<pitch middle="5">

This text should be spoken at pitch five.

 <pitch middle="-5">

 This text should be spoken at pitch zero.

 </pitch>

</pitch>
Zero represents the default middle pitch for a voice, with positive values being higher and negative values being lower.

Emph

The Emph tag instructs the voice to emphasize a word or section of text. The Emph tag cannot be empty. The following word should be emphasized.

<emph> boo </emph>!
The method of emphasis may vary from voice to voice.

Spell

The Spell tag forces the voice to spell out all text, rather than using its default word and sentence breaking rules, normalization rules, and so forth. All characters should be expanded to corresponding words (including punctuation, numbers, and so forth). The Spell tag cannot be empty.

<spell>

These words should be spelled out.

</spell>

These words should not be spelled out.
Direct item insertion tags

Three tags are supported that applications the ability to insert items directly at some level: Silence, Pron, and Bookmark.

Silence

The Silence tag inserts a specified number of milliseconds of silence into the output audio stream. This tag must be empty, and must have one attribute, Msec.

Five hundred milliseconds of silence <silence msec="500"/> just occurred.
Pron
The Pron tag inserts a specified pronunciation. The voice will process the sequence of phonemes exactly as they are specified. This tag can be empty, or it can have content. If it does have content, it will be interpreted as providing the pronunciation for the enclosed text. That is, the enclosed text will not be processed as it normally would be.

The Pron tag has one attribute, Sym, whose value is a string of white space separated phonemes.

<pron sym="h eh 1 l ow & w er 1 l d "/>

<pron sym="h eh 1 l ow & w er 1 l d"> hello world </pron>
Bookmark

The Bookmark tag inserts a bookmark event into the output audio stream. Use this event to signal the application when the audio corresponding to the text at the Bookmark tag has been reached. The Bookmark tag must be empty.

The Bookmark tag has one attribute, Mark, whose value is a string. This value can then be used to differentiate between bookmark events (each of which will contain the string value from their corresponding tag).

The application will receive an event here,

<bookmark mark="bookmark_one"/>

and another one here

<bookmark mark="bookmark_two"/>

Voice context control tags
Two tags provide context to the current voice: PartOfSp and Context. Those tags enable the voice to determine how to deal with the text it is processing. With both of these tags, the extent to which voices use the context may vary.

PartOfSp

The PartOfSp tag provides the voice with the part of speech of the enclosed word(s). Use this tag to enable the voice to pronounce a word with multiple pronunciations correctly depending on its part of speech. The PartOfSp tag cannot be empty.

The PartOfSp tag has one attribute, Part, which takes a string corresponding to a SAPI part of speech as its attribute. Only SAPI defined parts of speech are supported - "Unknown", "Noun", "Verb", "Modifier", "Function", "Interjection".

<partofsp part="noun"> A </partofsp> is the first letter of the alphabet.

Did you <partofsp part="verb"> record </partofsp> that <partofsp part="noun"> record </partofsp>?
Context
The Context tag provides the voice with information which the voice may then use to determine how to normalize special items, like dates, numbers, and currency. Use this tag to enable the voice to distinguish between confusable date formats (see the example, below). The Context tag cannot be empty.

The Context tag has one attribute, Id, which takes a string corresponding to the context of the enclosed text. Several contexts are defined by SAPI and are more likely to be recognized by SAPI compliant voices, but any string may be used. See documentation for a particular voice for more details.

<context id="date_mdy"> 03/04/01 </context> should be March fourth, two thousand one.

<context id="date_dmy"> 03/04/01 </context> should be April third, two thousand one.

<context id="date_ymd"> 03/04/01 </context> should be April first, two thousand four.
Voice Selection Tags

There are two tags which can be used (potentially) to change the current voice: Voice and Lang.

Voice

The Voice tag selects a voice based on its attributes, Age, Gender, Language, Name, Vendor, and VendorPreferred. The tag can be empty, in which case it changes the voice for all subsequent text, or it can have content, in which case it only changes the voice for that content.

The Voice tag has two attributes: Required and Optional. These correspond exactly to the required and optional attributes parameters to ISpObjectTokenCategory_EnumerateTokens and SpFindBestToken functions. The selected voice follows exactly the same rules as the latter of these two functions. That is, all the required attributes are present, and more optional attributes are present than with the other installed voices (if several voices have equal numbers of optional attributes one is selected at random). See Object Tokens and Registry Settings for more details.

In addition, the attributes of the current voice are always added as optional attributes when the Voice tag is used. This means that, a voice which is more similar to the current voice will be selected over one which is less similar.

If no voice is found that matches all of the required attributes, no voice change will occur.

The default voice should speak this sentence.

<voice required="Gender=Female;Age!=Child">
A female non-child should speak this sentence, if one exists.

<voice required="Age=Teen">

 A teen should speak this sentence - if a female, non-child teen is present, she will be selected over a male teen, for example.

 </voice>

</voice>

Lang

The Lang tag selects a voice based solely on its Language attribute. The tag can be empty, in which case it changes the voice for all subsequent text; or it can have content, in which case it only changes the voice for that content.

The Lang tag has one attribute, LangId. This attribute should be a LANGID, such as 409 (U.S. English) or 411 (Japanese). Note that these numbers are hexadecimal, but without the typical "0x".

The Lang tag is a shortened version of the Voice tag with the Required attribute containing "Language=xxx". So the following examples should produce exactly the same results:

<voice required="Language=409">

A U.S. English voice should speak this.

</voice>

<lang langid="409">

 A U.S. English voice should speak this.

</lang>

Custom Pronunciation

An alternative to using the <P> tag with the DISP and PRON attributes is to use custom pronunciation. Using custom pronunciation, tags in the form of the following.

<P DISP="disp" PRON="pron">word</P>

can be written as

<P>/disp/word/pron;</P>

More specifically, if you want to recognize the word hello only when it is pronounced as ah and display greeting when recognized, you would normally use something like the following.

<P DISP="greeting" PRON="ah">hello</P>

Using custom pronunciation, the above would translate to the following.

<P>/greeting/hello/ah;</P>
APPENDIX C

SpeechVisemeType Enum

The SpeechVisemeType enumeration lists the visemes supported by the SpVoice object. This list is based on the original Disney visemes.

Definition

Enum SpeechVisemeType

 SVP_0 = 0 'silence

 SVP_1 = 1 'ae ax ah

 SVP_2 = 2 'aa

 SVP_3 = 3 'ao

 SVP_4 = 4 'ey eh uh

 SVP_5 = 5 'er

 SVP_6 = 6 'y iy ih ix

 SVP_7 = 7 'w uw

 SVP_8 = 8 'ow

 SVP_9 = 9 'aw

 SVP_10 = 10 'oy

 SVP_11 = 11 'ay

 SVP_12 = 12 'h

 SVP_13 = 13 'r

 SVP_14 = 14 'l

 SVP_15 = 15 's z

 SVP_16 = 16 'sh ch jh zh

 SVP_17 = 17 'th dh

 SVP_18 = 18 'f v

 SVP_19 = 19 'd t n

 SVP_20 = 20 'k g ng

 SVP_21 = 21 'p b m

End Enum

Elements
SVP_0

The viseme representing silence.

SVP_1

The viseme representing ae, ax, and ah.

SVP_2

The viseme representing aa.

SVP_3

The viseme representing ao.

SVP_4

The viseme representing ey, eh, and uh.

SVP_5

The viseme representing er.

SVP_6

The viseme representing y, iy, ih, and ix.

SVP_7

The viseme representing w and uw.

SVP_8

The viseme representing ow.

SVP_9

The viseme representing aw.

SVP_10

The viseme representing oy.

SVP_11

The viseme representing ay.

SVP_12

The viseme representing h.

SVP_13

The viseme representing r.

SVP_14

The viseme representing l.

SVP_15

The viseme representing s and z.

SVP_16

The viseme representing sh, ch, jh, and zh.

SVP_17

The viseme representing th and dh.

SVP_18

The viseme representing f and v.

SVP_19

The viseme representing d, t and n.

SVP_20

The viseme representing k, g and ng.

SVP_21

The viseme representing p, b and m.

Side Coronal1 Coronal2 Sagital

RIHN

(Right_arm In_Body High Near)

PAGE
Professor: Ph.D. Marek Perkowski

Student: Alejandro Yatzail Pérez Valadez

PSU ID: 920-01-8090

[image: image80.png]

[image: image81.png]

[image: image82.jpg]

[image: image83.jpg]

[image: image84.jpg]

[image: image85.jpg]

[image: image86.jpg]

[image: image87.jpg]OuUT OF OuUT OF
BODY BODY
RIGHT SID LEFT SIDE

SONBI’s Motion Segmentation (Coronal Plane 1)

[image: image88.jpg]HIGH

LOW

RIGHT SID LEFT SIDE

SONBI’s Motion Segmentation (Coronal Plane 2)

[image: image89.jpg]FAR

BACK

SONBI’s Motion Segmentation (Sagital Plane)

[image: image90.png]

